Mu Transpositional Recombination: Donor DNA Cleavage and Strand Transfer in trans by the Mu Transposase

نویسندگان

  • Harri Savilahti
  • Kiyoshi Mizuuchi
چکیده

Central to the Mu transpositional recombination are the two chemical steps; donor DNA cleavage and strand transfer. These reactions occur within the Mu transpososome that contains two Mu DNA end segments bound to a tetramer of MuA, the transposase. To investigate which MuA monomer catalyzes which chemical reaction, we made transpososomes containing wild-type and active site mutant MuA. By pre-loading the MuA variants onto Mu end DNA fragments of different length prior to transpososome assembly, we could track the catalysis by MuA bound to each Mu end segment. The donor DNA end that underwent the chemical reaction was identified. Both the donor DNA cleavage and strand transfer were catalyzed in trans by the MuA monomers bound to the partner Mu end. This arrangement explains why the transpososome assembly is a prerequisite for the chemical steps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition.

The chemistry of Mu transposition is executed within a tetrameric form of the Mu transposase (MuA protein). A triad of DDE (Asp, Asp35Glu motif) residues in the central domain of MuA (DDE domain) is essential for both the strand cleavage and strand transfer steps of transposition. Previous studies had suggested that complete Mu transposition requires all four subunits in the MuA tetramer to car...

متن کامل

Positional Information within the Mu Transposase Tetramer: Catalytic Contributions of Individual Monomers

The strand cleavage and strand transfer reactions of Mu DNA transposition require structural/catalytic contributions from separate polypeptide domains of individual transposase (MuA) monomers within the functional MuA tetramer. Based on catalytic complementation between two inactive MuA variants, we have derived certain rules by which the physical location of a MuA monomer within the transposit...

متن کامل

The terminal nucleotide of the Mu genome controls catalysis of DNA strand transfer.

Members of the transposase/retroviral-integrase superfamily use a single active site to perform at least two reactions during transposition of a DNA transposon or a retroviral cDNA. They hydrolyze a DNA sequence at the end of the mobile DNA and then join this DNA end to a target DNA (a reaction called DNA strand transfer). Critical to understanding the mechanism of recombination is elucidating ...

متن کامل

Polynucleotidyl transfer reactions in transpositional DNA recombination.

The transposon family of mobile genetic elements is widespread among organisms. While only a handful of these elements have been analyzed biochemically, all the elements that have been studied in detail share similar reaction steps. These steps that compose the transpositional recombination process are two distinct types of polynucleotidyl transfer reactions which generate a strand transfer pro...

متن کامل

DNA repair by the cryptic endonuclease activity of Mu transposase.

Phage Mu transposes by two distinct pathways depending on the specific stage of its life cycle. A common strand transfer intermediate is resolved differentially in the two pathways. During lytic growth, the intermediate is resolved by replication of Mu initiated within the flanking target DNA; during integration of infecting Mu, it is resolved without replication, by removal and repair of DNA f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 85  شماره 

صفحات  -

تاریخ انتشار 1996